Functional Networking of Human Divergently Paired Genes (DPGs)
نویسندگان
چکیده
Divergently paired genes (DPGs), also known as bidirectional (head-to-head positioned) genes, are conserved across species and lineages, and thus deemed to be exceptional in genomic organization and functional regulation. Despite previous investigations on the features of their conservation and gene organization, the functional relationship among DPGs in a given species and lineage has not been thoroughly clarified. Here we report a network-based comprehensive analysis on human DPGs and our results indicate that the two members of the DPGs tend to participate in different biological processes while enforcing related functions as modules. Comparing to randomly paired genes as a control, the DPG pairs have a tendency to be clustered in similar "cellular components" and involved in similar "molecular functions". The functional network bridged by DPGs consists of three major modules. The largest module includes many house-keeping genes involved in core cellular activities. This module also shows low variation in expression in both CNS (central nervous system) and non-CNS tissues. Based on analyses of disease transcriptome data, we further suggest that this particular module may play crucial roles in HIV infection and its disease mechanism.
منابع مشابه
Plastid-LCGbase: a collection of evolutionarily conserved plastid-associated gene pairs
Plastids carry their own genetic material that encodes a variable set of genes that are limited in number but functionally important. Aside from orthology, the lineage-specific order and orientation of these genes are also relevant. Here, we develop a database, Plastid-LCGbase (http://lcgbase.big.ac.cn/plastid-LCGbase/), which focuses on organizational variability of plastid genes and genomes f...
متن کاملEnergy restriction does not compensate for the reduced expression of hepatic drug-processing genes in mice with aging.
Liver is the major organ that eliminates xenobiotics from the body, a process that is accomplished by a series of drug-processing genes (DPGs). These genes encode transporters on both basolateral and apical membranes of hepatocytes, as well as phase I and II enzymes. The current study compares the expression of hepatic DPGs in adult and aged mouse livers and explores the potential effects of en...
متن کاملComparing classification performance of several types of significant genes to identify key genes in uremia.
OBJECTIVE End-stage renal failure has profound changes in human gene expressions, but the molecular causation of these pleomorphic effects termed uremia is poorly understood. The purpose of this study was to explore key genes in uremia by comparing classification performance of five kinds of significant genes based on the support vector machines (SVM) model. MATERIALS AND METHODS The five kin...
متن کاملAge-Specific Regulation of Drug-Processing Genes in Mouse Liver by Ligands of Xenobiotic-Sensing Transcription Factors.
The xenobiotic-sensing transcription factors (xeno-sensors) AhR, CAR, and PXR upregulate the expression of many drug-processing genes (DPGs) in liver. Previous studies have unveiled profound changes in the basal expression of DPGs during development; however, knowledge on the ontogeny of the inducibility of DPGs in response to pharmacological activation of xeno-sensors is still limited. The goa...
متن کاملCharacterizing drug-metabolizing enzymes and transporters that are bona fide CAR-target genes in mouse intestine
Intestine is responsible for the biotransformation of many orally-exposed chemicals. The constitutive androstane receptor (CAR/Nr1i3) is known to up-regulate many genes encoding drug-metabolizing enzymes and transporters (drug-processing genes/DPGs) in liver, but less is known regarding its effect in intestine. Sixty-day-old wild-type and Car-/- mice were administered the CAR-ligand TCPOBOP or ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013